线性代数中怎么证明正交矩阵的特征值是1或者-1?
人气:488 ℃ 时间:2019-10-11 17:58:04
解答
首先要明白矩阵的基本知识:
若矩阵A的特征值为λ,则A的转置的特征值也为λ,而A的逆的特征值为1/λ.
对于正交矩阵来说,矩阵的转置即为矩阵的逆,即:
λ=1/λ,所以:λ=1或-1.
推荐
- 设A是正交矩阵,绝对值A=-1,证明-1是A的特征值.
- 证明任何正交矩阵的实特征值要么是1要么是-1
- 线性代数问题:设A为正交阵,即A^T A=E,且|A|=-1,证明-1为A的特征值?
- 设A为正交矩阵,且|A|=-1,证明-1是A的特征值 关于这个问题,能解释清楚一点么?
- 线性代数问题 A和B 是正交矩阵,是证明A*B也是正交矩阵.
- 如图(1)是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小正方形,然后按图(2)形状拼成一个正方形.(1)你认为图(2)中的阴影部分的正方形边长是多少?(2)请用两种不同的方法求图(2)阴影部分的面积;(3)观察图(2),你能
- 南半球夏季澳大利亚盛行偏北风是因为南半球夏半年太阳直射南移,北半球东北信风随着越过赤道偏转成西北风.
- 非谓语动词的现在分词和现在分词完成式的区别
猜你喜欢