> 数学 >
知向量a=(-√3sinωx,cosωx),向量b=(cosωx,cosωx)(ω>0),令函数f(x)=向量a向量b,
且f(x)的最小正周期为π.
当0<x≦π/3时,求f(x)的值域
人气:211 ℃ 时间:2019-09-23 04:26:09
解答
函数f(x)=向量a向量b=-√3sinωx*cosωx+cosωx*cosωx=-√3/2sin2ωx+(cos2ωx+1)/2=cos2ωx/2-√3/2sin2ωx+1/2=cos(2ωx+π/3)+1/2.
f(x)的最小正周期为π
所以2π/2ω=π 即 ω=1
当0<x≦π/3时 π/3
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版