已知与曲线C:x^2+y^2-2x-2y+1=0相切的直线l交x轴y轴于A,B两点,O为原点OA=a,OB=b(a>2,b>2).
(1)求线段AB中点的轨迹方程;
(2)求ab的最小植
人气:445 ℃ 时间:2019-09-05 01:19:52
解答
曲线C为圆:(x-1)^2+(y-1)^2 =1.圆心C(1,1),半径=1
直线L:x/a +y/b =1,若直线L与圆相切,则:
C(1,1)到直线L距离 =半径 =|1/a +1/b -1|/根号(1/a^2+1/b^2)
==> ab(ab-2a-2b-2)=0 ==> ab-2a-2b+2 =0
==> (a-2)(b-2)=2 ...(1)
线段AB中点P(X,Y),X=a/2,Y=b/2
(1) ==> (X-1)(Y-1)=1/2,(X,Y>1).此即轨迹方程
三角形AOB面积S=ab/2
ab-2a-2b+2 =0 ==> ab+2=2(a+b)>=4*根号(ab)
ab>=6+4*根号2
==> S>=3+2*根号2
面积的最小值 =3+2*根号2
推荐
- 已知与曲线C:x^2+y^2-2x-2y+1=0相切的直线l交x轴y轴于A,B两点,O为原点OA=a,OB=b(a>2,b>2).
- 已知圆C:x^2+y^2-2x+2y+1=0,与圆C相切的直线l交x轴、y轴的正方向于A、B两点,O为原点,OA=a,OB=b(a>2,b>2).(1)求证:圆C与直线l相切的条件是(a-2)(b-2)=2;(2)求线段AB中点的轨迹方程;
- 已知曲线C:X2+Y2-2X-2Y+1=0相切的直线L交X,Y轴的正半轴AB两点,O为原点,若|OA|=a,|OB|=b(a>2,b>2) (1)求
- 已知与圆C:x^2+y^2-2x-2y+1=0相切的直线l交于x,y轴于A B两点,O为坐标原点,且|OA|=a,|OB|=b
- 已知直线l与曲线C:x^2+y^2-2x-2y+1=0相切,直线l与x轴,y轴分别交于A,B,O为原点|OA|=a,|OB|=b(a>2,b>2)
- 爱因斯坦为什么认为光速是宇宙中最快的速度?
- 一、——Who went to Central Park last Saturday?
- 如何辨别NaOH、CuSO4、MgCl2、Na2SO4
猜你喜欢