设A为N阶方阵,且A-E可逆,A^2+2A-4E=0,求A+3E的逆方阵
人气:370 ℃ 时间:2020-01-25 15:15:16
解答
将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1
推荐
- 若A满足A^2-2A-4E=0,证明A+E与A-3E都可逆,且互为逆矩阵,若A满足A^2+2A+3E=0,证明A是可逆矩阵,并求A^(-1)
- 证明题 设N阶方阵A满足A²-2A-4E=0 证明A-3E 可逆
- 设A为n阶方阵,满足A^2=3A,证明:(1)4E-A可逆;(2)如果A不等于0,证明3E-A不可逆.
- 设A为n阶方阵,且(A-E)可逆,A^2+2A-4E=0.证明(A+3E)可逆,并求(A+3E)^-1
- 设n阶矩阵A满足A^2+2A–3E=0,证明A+4E可逆,并求它们的逆.
- 一个数的2/3是1/2,这个数的2/5是多少{列上算式}
- 六、列方程解应用题(8分) 28、某鱼场的甲仓库存鱼30吨,乙仓库存鱼40吨,现要再往这两个仓库运 送80吨鱼
- 已知a^2+a-1=0 (1)a-1/a (2)a2+1/a2 (3)a3+2a2+1
猜你喜欢