| 3 |
| 2 |
(2)设抛物线的解析式为:y=ax(x-3),
当x=
| 3 |
| 2 |
| 9 |
| 4 |
| 3 |
| 2 |
| 9 |
| 4 |
当x=
| 9 |
| 2 |
| 27 |
| 4 |
| 9 |
| 2 |
| 27 |
| 4 |

依题意得:
| 27 |
| 4 |
| 9 |
| 4 |
解得:a=
| 1 |
| 2 |
∴抛物线的解析式为:y=
| 1 |
| 2 |
| 3 |
| 2 |
(3)证明:过点E作ED⊥FG,垂足为D,
设E(x,
| 1 |
| 2 |
| 3 |
| 2 |
则F(x+3,
| 1 |
| 2 |
| 3 |
| 2 |
得:S梯形EFGH=
| 3 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
∵
| 1 |
| 6 |
| 1 |
| 6 |
| 3 |
| 2 |
∴S梯形EFGH=
| 1 |
| 6 |

| 1 |
| 6 |
| 3 |
| 2 |
| 3 |
| 2 |
| 9 |
| 4 |
| 3 |
| 2 |
| 9 |
| 4 |
| 9 |
| 2 |
| 27 |
| 4 |
| 9 |
| 2 |
| 27 |
| 4 |

| 27 |
| 4 |
| 9 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 1 |
| 6 |
| 1 |
| 6 |
| 3 |
| 2 |
| 1 |
| 6 |