对于数列Xn,若X2k-1→ a (k→∞),X2k→ a (k→∞),证明:Xn→ a (n→∞)
微积分的题目
人气:318 ℃ 时间:2019-08-22 11:36:51
解答
X(2k-1)→ a (k→∞),
所以
对任意M>0,有p1>0,使得当|n|=|2k-1|>M时,|X(2k-1)-a|0,有p2>0,使得当|n|=|2k|>M时,|X(2k)-a|0,有p>0,使得当|n|=|k|>M时,|Xk-a|
推荐
- 对于数列Xn,若X2k-1→ a (k→∞),X2k→ a (k→∞) 证明:Xn→ a (n→∞)
- 设x1=2,Xn+1=1/2(Xn+1/Xn)(n=1,2,…),证明数列{Xn}收敛,并求其极限.
- 设xn=1/1^2+1/2^2+...+1/n^2,证明数列{xn}有极限.
- 对于数列{Xn},若X2n-1趋向于a(k趋向于无穷大),X2k趋向a(k趋向无穷大),证明Xn趋向a(n趋向无穷大)
- 已知数列{Xn}满足x1=1/2,xn+1=1/(1+xn),n∈N+,证明:|xn+1-xn|≤1/6*(2/5)^n-1 (用数学归纳法)
- 六下暑假作业《轻松上初中》数学答案.(全部)
- 冰心《纸船》赏析
- 晷字的读音.
猜你喜欢