解析几何A1,A2是椭圆x^2/9+y^/4=1长轴两端点,P1,P2是垂直于A1A2的弦的两端点,求A1P1与A2P2交点的轨迹
在线等,谢谢
人气:128 ℃ 时间:2019-10-09 00:51:35
解答
先写结果
(X/3)^2-(Y/2)^2=1
设p1(x,y),则p2(x,-y)
P1,p2在椭圆x^2/9+y^2/4=1上,则x=3sinθ,y=2cosθ
则A1P1的方程为(-3-x)/(0-y)=( 3sinθ+3)/2cosθ 1)
A2P2的方程为(3-x)/(0-y)=( -3sinθ+3)/2cosθ 2)
Q(x,y)为A1P1,A2P2的交点.联立方程1),2)得x=cscθ,y=2ctgθ
消去θ可得(X/3)^2-(Y/2)^2=1
2.
讨论y>0的情况:设P1(x1,y1),P2(x1,-y1),y1>0,两只县交点为(x,y)
于是直线A1P1方程为:y=y1(x+3)/(x1+3) (1)
直线A2P2方程为:y=-y1(x-3)/(x1-3)
求交点有y1(x+3)/(x1+3)=-y1(x-3)/(x1-3)
化简得2y1(xx1-9)=0,P1P2为弦,于是y1≠0,于是x1=9/x (2)
又(x1^2)/9+(y1^2)/4=1,于是y1=2sqrt(9-x1^2)/3 (3)
将(2)式、(3)式代入(1)式,化简得y=2sqrt(x^2-9)/3
y
推荐
- A1,A2为圆x^2+y^2=1与x轴的两个交点,P1P2为垂直于x轴的弦,且A1P1与A2P2的交点为M.求M的轨迹方程.
- 设A1、A2是双曲线x2/4-y2=1的实轴两个端点,P1、P2是垂直于A1A2的弦的两个端点,则直线A1P1与A2P2交点的
- 设 A1、A2 是双曲线x^2/4-y^2=1的实轴两个端点,垂直于x轴的弦p1.p2交双曲线于p1.P2两点,则直线A1P1,A2P2 交点的轨迹方程为
- 过点M(1,1)的直线与椭圆x^2/16+y^2/4=1交于P1,P2两点,求弦P1,P2的中点的轨迹方程
- 从点A(6,8)向圆x^2+y^2=16任意引一割线L交圆于P1,P2两点,求弦P1P2的中点P的轨迹.
- 两个数的积是96,他们的最大公约数是4,这两个数分别是几和几?
- 材料作文:
- 713除以31的商,再乘13分之2,积是多少
猜你喜欢
- 一年级孝敬父母手抄报怎么写
- 我的直尺,用英语,一本英汉字典,在铅笔盒里,那枝铅笔,拼写你的名字,一块橡皮,这些用英语怎么说
- in are some school student library the连词成句
- 一组数据-1,-2,x,1,2的平均数为0,则这组数据的方差为_.
- 已知|x+2|+2(y-1/2)的平方=c,求代数式3y的平方-6x的平方y-4y的平方+2x的平方y
- 一道 初二数学 整式的乘除与因式分解 选择题.
- 不等式a^2+3b^2≥x b(a+b)对任意的a,b∈R恒成立,则实数x的最大值是
- 要使关于x、y的多项式1/2x^2-mxy+(1-m)x-ny-3中不含一次项,求m+2n的值.