> 数学 >
1.如图,已知二次函数y=x2+bx+c的图象的对称轴为直线x=1,且与x轴有两个不同的交点,其中一个交点坐标为(-1,0).
(1)求二次函数的关系式;
(2)在抛物线上有一点A,其横坐标为-2,直线l过点A并绕着点A旋转,与抛物线的另一个交点是点B,点B的横坐标满足-2<xB<3
2
,当△AOB的面积最大时,求出此时直线l的关系式;
(3)抛物线上是否存在点C使△AOC的面积与(2)中△AOB的最大面积相等?若存在,求出点C的横坐标;若不存在说明理由.
人气:377 ℃ 时间:2019-08-20 07:32:58
解答
(1)二次函数y=x2+bx+c图象的对称轴是直线x=1,且过点A(-1,0),代入得:-b 2×1 =1,1-b+c=0,解得:b=-2,c=-3,所以二次函数的关系式为:y=x2-2x-3;(2)∵点在抛物线上,∴A(-2,5).由于AO是定长,要是△AOB的面积...
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版