已知函数f(x)的定义域为{ x|x≠kπ},且对于定义域内的任何x,y有f(x-y)=f(x)f(y)+1 / f(y)-f(x)成立
已知函数f(x)的定义域为{ x|x≠kπ},且对于定义域内的任何x,y有f(x-y)=f(x)f(y)+1 / f(y)-f(x)成立,且f(a)=1(a为大于0的常数),当0
人气:462 ℃ 时间:2019-09-29 02:58:41
解答
1)f(x-a)=(f(x)+1)/(1-f(x))
f(a-x)=(f(x)+1)/(f(x)-1)
即 f(x)=-f(-x)
故 为奇函数
2) f(x-a)=(f(x)+1)/(1-f(x))
=(f(x+a)+1-f(a+x))/(1-f(x+a)-f(x+a)-1)
=-1/f(x+a)
所以 f(x)=-1/f(x+2a)=f(x+4a)
故 为周期性函数 T=4a
3)f(a)=1 故 f(-a)=-1 因此 f(3a)=-1
f(2a)=f(a-(-a))=(f(a)f(-a)+1)/(f(-a)-f(a))=0
因为 0
推荐
- 已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)
- 函数y=f(x)的定义域是[-1,1],若k属于(0,1),则F(x)=f(x-k)+f(x+k)的定义域为什么?
- 已知函数Y=f(x)的定义域为x∈R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,
- 设函数f(x)=a^x-(k-1)a^(-x)(a>0且a≠1)是定义域为R的奇函数.
- 定义域在R上的函数f(x)对于任意的x,y有f(x+y)=f(x)+f(y)成立,且f(2)=3,当x>0时,f(x)>0. (1)判断并证明函数f(x)的单调性和奇偶性; (2)解不等式:f(|x-5|)-6<f(|2x+
- 一个长6米,宽3米,高2米的房间,放一根竹竿,竹竿最长多少米?
- (2012•顺义区二模)下列关于有机物的叙述正确的是( ) A.汽油、柴油和植物油都是碳氢化合物 B.棉花和合成纤维的主要成分均为纤维素 C.乙烯和苯蒸气都能使溴水褪色,不能鉴别乙烯
- 什么情况下1+1等于3?
猜你喜欢