设abcd是实数且满足a2+b2=2,c2+d2=2,ac=bd,求证:a2+c2=2,b2+d2=2,ab=cd
人气:367 ℃ 时间:2019-09-09 17:20:52
解答
∵a²+b²=2
∴a²d²+b²d²=2d²
∵ac=bd ∴ b²d²=a²c²
∴a²d²+a²c²=2d²
∴a²(d²+c²)=2d²
∵c²+d²=2
∴2a²=2d²
∴a²=d²
∵c²+d²=2
∴c²+a²=2
∵a²+b²=2 a²=d²
∴b²+d²=2能推导一下为什么ab=cd吗?谢谢!额,亲。这是题目里条件啊条件给的是ac=bd啊额,我正是用的ac=bd啊
推荐
- 已知a,b,c,d均为实数,且ad-bc=1,a2+b2+c2+d2-ab+cd=1,则abcd= _ .
- 已知实数a、b、c、d满足a2+b2=1,c2+d2=2,求ac+bd的最大值.
- a,b,c为实数,且a2+b2=1,c2+d2=1,求证|ac+bd
- 假设a b c d属于实数,ac-bd=1.证明:a2+b2+c2+d2+ab+cd≠1
- 已知a、b、c、d为实数,且满足a2+ b2=1,c2+d2=1,ac+bd=0求证d2+b2=1,c2+a2=1,ad+cb=0
- I’d like(非缩略形式)
- financial crisis in western countries reason how to solve it
- 有关原核生物DNA复制过程中,RNA引物的叙述,哪项是正确的?
猜你喜欢