已知偶函数f(x)是定义域为R,且恒满足f(x+2)=f(2-x),若方程f(x)=0在[0,4]上只有三个实根,且一个根是4,
已知偶函数f(x)是定义域为R,且恒满足f(x+2)=f(2-x),若方程f(x)=0在[0,4]上只有三个实根,且一个根是4,求方程在区间【-8,10】中的根
人气:428 ℃ 时间:2019-08-18 23:08:28
解答
f(x+2)=f(2-x)
所以:x=2是函数的对称轴
既然,f(x)=0有一个根为4,即f(4)=0
则:f(0)=0, 所以:x=0是一个根
而f(x)=0在[0,4]上只有三个实根,
则第三个根只能是:x=2, 所以:f(2)=0
f(x+2)=f(2-x)=f(x-2)
所以:f(x)=f(x+4),所以f(x)的周期为4
因f(0)=0
则:f(10)=f(2+2*4)=f(2)=0
f(-8)=f(8)=f(0+2*4)=f(0)=0
f(-6)=f(6)=f(2+4)=f(2)=0
f(-4)=f(4)=0
f(-2)=f(2)=0
f(0)=0
所以,方程在区间【-8,10】中共有10个根:
x=10,8,6,4,2,0,-2,-4,-6,-8
推荐
- 已知函数f(x)是定义域R上的偶函数,当X≥0时,f(x)=x/(1+x).求函数f(x)解析式.证明方程f(x)=2为底
- 已知定义域在R上的偶函数f(x)满足f(x+2)*f(x)=1对于x属于R恒成立,且f(x)>0,则f(2
- 已知偶函数f(x)的定义域是R,若当x≥0时,f(x)=-x^2+2x+2,求f(x)在R上的表达式
- 函数f(x)定义域为R,且f(2+x)=f(2-x).若f(x)又是偶函数,且x在[0,2]时f(x)=2x-1,求x在[-4,0]时f(x)表达式
- 偶函数f(x)的定义域为R,若f(x-1)=f(x+1)对一切x∈R恒成立,又当0≤x≤1时,f(x)=-x²+4
- 现有橡皮、盐水、水银、塑料尺、铅笔芯五种物品.请将它们分类,其中_属于一类,特征是_.
- 求两道数学题的解答和解析.
- 判断下列句子有了什么修辞手法.比如,看,海边不是泛着白色的浪花吗?是用了什么修辞手法
猜你喜欢
- 求离别情意的古诗词.越多越好
- What the soldier ( )good to our country A,does do B,does do does C,does does do D,do does do
- 望远镜是低倍看得远还是高倍看得远
- 倾听
- 一列火车通过一座长2.7米的大桥,从车头上桥到车尾离桥共需4分钟.已知火车的速度是每分钟0.8千米.这列火车长多少米?
- :已知抛物线y=ax的平方-2x+c的顶点为(1,-4)求a c的值.
- The story is very interisting.Will you please__it__us?A.read,for B.tell,for C.read,to D.say,to.应选
- 1.同一周期从左到右原子半径减小 2.非金属的原子半径<其阴离子的原子半径