若a,b,c均为实数,且a=x2+2y+2,b=y2-2z+4/3,c=z2-2x+2/3,求证:a、b、c中至少有一个大於0
人气:233 ℃ 时间:2019-09-18 05:27:24
解答
假设这三个数都小于等于0,则:
(x²+2y+2)+(y²-2z+4/3)+(z²-2x+2/3)≤0
(x-1)²+(y+1)²+(z-1)²+1≤0
则这个式子矛盾,从而假设错误.
所以,a、b、c中至少有一个大于0
推荐
- 用反证法证明.若a、b、c均为实数,且a=x2-2y+π2,b=y2-2z+π3,c=z2-2x+π6,求证:a、b、c中至少有一个大于0.
- 若a b c均为实数,且a=x2+2y+π/2 ,b=y2+2z+π/3 ,c=z2-2x+π/6,求证a b c中至少有一个大于0.
- 已知a,b,c,均为实数,且a=x^2-2y+ π /2,b=y^2-2z+π /3,c=z^2-2x+π/6求证abc中至有一个大于0
- 用反证法证明.若a、b、c均为实数,且a=x2-2y+π2,b=y2-2z+π3,c=z2-2x+π6,求证:a、b、c中至少有一个大于0.
- 1.已知a b c均为实数 且a=x^2-2y+π/2,b=y^2-2z+π/3,c=z^2-2x+π/6 求证abc之中至少有一个大于0
- log以根号2-1的3+2倍根号2)的对数怎么算
- 物理:做饭时用的液化气是怎样形成的?
- 做结构分析的时候.怎么区分定中结构、状中结构与中补结构.
猜你喜欢