a2,a3,a4又分别是某等差数列的第7项、第3项和第1项,
∴a2-a4=3(a3-a4),
即2a1q3-3a1q2+a1q=0,
∴2q2-3q+1=0.
∵q≠1,
∴q=
| 1 |
| 2 |
∴an=64×(
| 1 |
| 2 |
(2)∵an=64×(
| 1 |
| 2 |
∴bn=log2an=log2[64×(
| 1 |
| 2 |
∴|bn|=
|
当n≤7时,Tn=
| n |
| 2 |
| n(13−n) |
| 2 |
当n>7时,Tn=T7+
| (n−7)(n−6) |
| 2 |
| (n−7)(n−6) |
| 2 |
∴Tn=
|
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
|
| n |
| 2 |
| n(13−n) |
| 2 |
| (n−7)(n−6) |
| 2 |
| (n−7)(n−6) |
| 2 |
|