| 1 |
| 2 |
| 1 |
| 2 |
∴(2log
| 1 |
| 2 |
| 1 |
| 2 |
∴-3≤log
| 1 |
| 2 |
| 3 |
| 2 |
即log
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
∴(
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 2 |
从而M=[2
| 2 |
又f(x)=(log2x-1)(log2x-3)=(log2x)2-4log2x+3=(log2x-2)2-1.
∵2
| 2 |
∴
| 3 |
| 2 |
∴当log2x=2,即x=4时ymin=-1;
当log2x=3,即x=8时,ymax=0.
| 1 |
| 2 |
| 1 |
| 2 |
| x |
| 2 |
| x |
| 8 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 2 |
| 2 |
| 2 |
| 3 |
| 2 |