集合M={a,b,c}集合N{-1,0,1},由M到N的映射f满足f(a)+f(b)=f(c),这样的映射共有几个?
人气:273 ℃ 时间:2020-06-10 12:40:07
解答
f(a)=-1 f(b)=0 f(c)=-1
f(a)=-1 f(b)=1 f(c)=0
f(a)=0 f(b)=-1 f(c)=-1
f(a)=0 f(b)=0 f(c)=0
f(a)=0 f(b)=1 f(c)=1
f(a)=1 f(b)=-1 f(c)=0
f(a)=1 f(b)=0 f(c)=1
一共7种映射
推荐
- 已知集合M={a,b,c},N={-1,0,1},从M到N的映射f满足f(a)-f(b)=f(c),那么映射f的个数有几个?
- 已知集合M={a,b,c},N={-1,0,1},从M到N的映射f满足f(a)+f(b)+f(c)=0,那么映射f的个数为?
- 设集合M={a,b,c},N={0,1},若映射f:M→N满足f(a)+f(b)=f(c),则映射f:M→N的个数为_.
- 设集合M={a,b,c},N={0,1},若映射f:M→N满足f(a)+f(b)=f(c),则映射f:M→N的个数为_.
- 已知集合M={a,b,c},N={-1,0,1},映射f:M到N,满足f(a)+f(b)=f(c),求映射个数
- f(X)=loga(1+x/1-X) (a大于0且a不等于1)
- 如图,E,F分别是正方形ABCD的边CD、AD上的点.且CE=DF,AE、BF相交于点O,下列结论:①AE=BF,②AE⊥BF,③AO=OE,④S△AOB=S四边形DEOF中,错误的有_.(只填序号)
- (-5)+(-2)-(-7)
猜你喜欢