已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,f(3)=-3.
(1)证明:函数y=f(x)是R上的减函数;
(2)试求函数y=f(x)在[m,n](m,n∈Z)上的值域.
上面第一题我用特殊值带入行吗 就是设 f(3)=f(3)+f(0) 得f(0)=0 f(3)-f(0)<0所以是减函数
还有就是第二题我看答案没看懂 答案变形f(n)=2f(1)+f(n-2)=n*f(1) 我不懂他这为什么2f(1)+f(n-2)=n*f(1)
人气:286 ℃ 时间:2019-10-19 21:03:52
解答
相当于是n个f(1)相加 f(n-2)=f(1)+f(n-3) ∴f(n)=2f(1)+f(n-2)=3f(1)+f(n-3)=……=nf(1) (1)证明 设x1,x2∈R,且x1<x2,f(x2)=f[x1+(x2-x1)]=f(x1)+f(x2-x1).∵x2-x1>0,∴f(x2-x1)<0.∴f(x2)=f(x1)+f(x2-x1)<f(x1).故f(x)是R上的减函数.(2)证 ∵f(a+b)=f(a)+f(b)恒成立,∴可令a=-b=x,则有f(x)+f(-x)=f(0),又令a=b=0,可得y=f(x)是奇函数.由于y=f(x)是R上的单调递减函数,∴y=f(x)在[m,n]上也是减函数,故f(x)在[m,n]上的最大值f(x)max=f(m),最小值f(x)min=f(n).由于f(n)=f(1+(n-1)) =f(1)+f(n-1)=… =nf(1),同理f(m)=mf(1).又f(3)=3f(1)=-3,∴f(1)=-1,∴f(m)=-m,f(n)=-n.∴函数y=f(x)在[m,n]上的值域为[-n,-m].
推荐
- 已知函数Y=f(x)的定义域为x∈R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,
- 已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)
- 已知函数y=f(x)的定义域为R,且对任意a,b∈∈R都有f(a+b)=f(a)+f(b),且当x>0时f﹙x﹚<0恒成立,证明
- 已知函数y=f(x)的定义域为R,且对任意a,b属于R,都有f(a+b)=f(a)+f(b),且当x>0时,f(x)<0恒成立,
- 已知函数y=f(x)的定义域为R,且对任意a,b∈R,都有f(a+b)=f(a)+f(b).且当x>0时,f(x)<0恒成立,f(3)=-3. (1)证明:函数y=f(x)是R上的减函数; (2)证明:函数y=f(x)是
- 某鱼塘中鲤鱼占65%,鲫鱼占35%,鲤鱼比鲫鱼多3000尾,这个鱼塘共养多少鱼?
- 从3名男生和2名女生中任选2人参加演讲比赛
- cos27°51′
猜你喜欢
- 原野、笛子、晚风、月亮是按照什么顺序
- 已知5^a=6,5^b=3,求4^a÷2^2b
- 有关雨的现代诗 是名人写的 谢谢.
- 甲,乙两地相距550km,客车和货车分别从两地相向而行,5h相遇客车与货车的速度之比是5比6,客车与货车的速度分别是多少?
- 请以“攀登人生阶梯”为话题,写一篇作文.要求:文体不限(诗歌除外),不少于600字.
- julie,wants,to,says,she,her,see,grandparents连词成句
- 秋天田野里有什么动物
- PRETTY GOES WITH EVERYTHING如何翻译?