如图,点O是等边三角形ABC内一点,角AOB=110°,角BOC=∠a,△OCD是等边三角形,连接AD.①求证∠ADC=∠a;②当a=150°时,判断△AOD的形状,并说明理由 每一步都要详细
不好意思,打错了,是 1.求证三角形COD是等边三角形.
2.当a=150度时,试判断三角形AOD的形状,并说明理由
人气:229 ℃ 时间:2020-03-26 12:31:55
解答
(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∠OCD=60°,∴CO=CD.∴△COD是等边三角形;(2)若△AOD是等腰三角形,所以分三种情况:①∠AOD=∠ADO②∠ODA=∠OAD③∠AOD=∠DAO,∵∠AOB=11...
推荐
- 如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD. (1)试说明:△COD是等边三角形; (2)当α=150°时,试判断△AOD的形状,并说明理由
- 如图,点O是等边△ABC,∠AOB=110°,∠BOC=a,△BOC≌△ADC,连接OD (1)求证:△COD是等边三角形
- 点O是等边三角形ABC内一点,角AOB=110,角BOC=α,将三角形BOC绕点C按顺时针方向旋转60°得到三角形ADC,连接OD.当a=150°时,试判断三角形AOD的形状,并说明理由.
- 点O是等边三角形ABC内一点,角AOB=110度,角BOC=X,将角形BOC绕点C按顺时针方向旋转60度,得三角形ADC,连接OD.
- 如图,点O是等边△ABC内一点,角AOB=110°,角BOC=α°.将三角形BOC绕C顺时针方向旋转60°得△ADC,连接OD.
- 若a不被2和3整除,求证24整除aa-1
- 分子式为C5H7Cl的有机物是含两个双键的环状有机物
- 六年级学生参加剪纸航模社团的有50人,正好是参加剪纸社团人数的六分之五.参加剪纸社团的有多少人?
猜你喜欢