在n≥2时,an=sn-sn-1=(-1)n(2n2+4n+1)-(-1)n-1[2(n-1)2+4(n-1)+1]=(-1)n•4n(n+1),
而n=1时,a1=-8满足an=(-1)n4n(n+1),故所求数列{an}通项an=(-1)n4n(n+1).
(2)∵bn=
(−1)n |
an |
1 |
4n(n+1) |
1 |
4 |
1 |
n |
1 |
n+1 |
因此数列{bn}的前n项和Tn=
1 |
4 |
1 |
n+1 |
4n |
n+1 |
(−1)n |
an |
(−1)n |
an |
1 |
4n(n+1) |
1 |
4 |
1 |
n |
1 |
n+1 |
1 |
4 |
1 |
n+1 |
4n |
n+1 |