定义在R上的函数f(x)满足:①对任意实数x,y∈R有f(x+y)=f(x)+f(y);②当x>0时,f(x)<0且f(1)=-2.
1)求证f(0)=0;
2)判断函数f(x)的单调性并证明;
3)解不等式f(x²-2x)-f(x)≥-8
麻烦给个具体的证明过程,分点,
人气:499 ℃ 时间:2019-08-21 12:04:06
解答
解1:
f(x+y)=f(x)+f(y)
f(1)=f(1+0)=f(1)+f(0)
即:f(1)=f(1)+f(0)
解得:f(0)=0
解2:
设:x、y>0,则:x+y>x,
由已知,有:f(x)<0、f(y)<0
因为:f(x+y)=f(x)+f(y)
所以:f(x+y)-f(x)=f(y)<0
即:f(x+y)<f(x)
所以:当x>0时,f(x)是单调减函数.
f(-x)=f(x-2x))=f(x)+f(-2x)=f(x)+2f(-x)
即:f(-x)=f(x)+2f(-x)
解得:f(-x)=-f(x)
可见:f(x)是奇函数.
因此,当x<0时,f(x)亦为单调减函数
而:f(0)=0,
故:f(x)为减函数.
解3:
f(x²-2x)-f(x)≥-8
f(x²)+f(-2x)-f(x)≥-8
f(x²)-3f(x)≥-8
推荐
- 定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意实数x,y有 f(x+y)=f(x)·f(y)
- 设函数f(x)的定义域为R,对于任意的实数x,y都有f(x+y)=f(x)+f(y),又当x>0时,f(x)
- 定义在R上的函数f(x)对一切实数x,y满足:f(x)≠0,且f(x+y)=f(x)*f(y),且当x1
- 已知定义在实数集R上的函数y=f(x)满足条件:对于任意的x.y∈R,f(x)-f(y)=f(x-y)
- 设f(x)是定义在R上的函数,且满足f(0)=1,并且对任意实数x,y,有f(x-y)=f(x)-y(2x-y+1),求f(x)的解析式
- 根茎叶有什么发育而来
- The rapid development of communications technology is transforming the ____ in which people communicate across time and
- 木炭燃烧时有多高温度
猜你喜欢