> 数学 >
如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.

(1)说明:AP是⊙O的切线;
(2)若OC=CP,AB=6,求CD的长.
人气:226 ℃ 时间:2020-04-09 22:23:26
解答
(1)证明:连接AO,AC(如图).
∵BC是⊙O的直径,
∴∠BAC=∠CAD=90°.
∵E是CD的中点,
∴CE=DE=AE.
∴∠ECA=∠EAC.
∵OA=OC,
∴∠OAC=∠OCA.
∵CD是⊙O的切线,
∴CD⊥OC.
∴∠ECA+∠OCA=90°.
∴∠EAC+∠OAC=90°.
∴OA⊥AP.
∵A是⊙O上一点,
∴AP是⊙O的切线;
(2) 由(1)知OA⊥AP.
在Rt△OAP中,∵∠OAP=90°,OC=CP=OA,即OP=2OA,
∴sinP=
OA
OP
=
1
2

∴∠P=30°.
∴∠AOP=60°.
∵OC=OA,
∴∠ACO=60°.
在Rt△BAC中,∵∠BAC=90°,AB=3
3
,∠ACO=60°,
AC=
AB
tan∠ACO
=
6
tan60°
=2
3

又∵在Rt△ACD中,∠CAD=90°,∠ACD=90°-∠ACO=30°,
∴CD=
AC
cos∠ACD
=
2
3
cos30°
=
2
3
3
2
=4.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版