> 数学 >
设函数F(X)具有二阶连续导数,且满足F(X)=[微分(上限X下限0)F(1-t)dt]+1,求F(X)
人气:475 ℃ 时间:2019-09-29 03:46:52
解答
求导
F'(x)=F(1-x)
变换变量
F'(1-x)=F(x)
在对F'(x)=F(1-x)求导
F''(x)=-F'(1-x)=-F(x)
解得
F(x)=Acosx+Bsinx
∵F(0)=1,F'(1)=F(0)=1
∴A=1,B=(1+sin1)/cos1
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版