过抛物线y2=4x的焦点F,作直线L交抛物线于A(x1,y1),B(x2,y2)两点,如果x1+x2=6,求:(1)弦长|AB|
(2)直线L的方程
人气:334 ℃ 时间:2019-10-26 04:55:43
解答
焦点(1,0),准线x=-1
A到准线距离=x1-(-1)=x1+1
B到准线距离=x2+1
抛物线上的点到焦点和到准线距离相等
所以AB=AF+BF=A到准线距离+B到准线距离=x1+1+x2+1=x1+x2+2=8
L y-0=k(x-1)
y=kx-k
代入
k^2x^2-2k^2x+k^2=4x
k^2x^2-(2k^2+4)x+k^2=
x1+x2=(2k^2+4)/k^2=6
k^2=1
所以y=x-1,y=-x+1
推荐
- 已知抛物线y^2=4x的一条过焦点的弦AB,A(x1,y1),B(x2,y2),AB所在直线与y轴焦点坐标(0,2),则1/y1+1/y2=
- 过抛物线y^2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,如果X1+X2=6,那么AB的长是( ).
- 设抛物线y2=4x的过焦点的弦的两个端点为A、B,它们的坐标为A(x1,y1),B(x2,y2),若x1+x2=6,那么|AB|=_.
- 抛物线y^2=4x的焦点为F.A(x1,y1),B(x2,y2)(x1>x2,y1>0,y2
- 过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1)B(x2,y2)两点,如果x1+x2=6,那么|AB|=( ) A.6 B.8 C.9 D.10
- 求圆心在直线3x+2y=0上,并且与x轴的交点分别为(-2,0),(6,0)的圆的方程.
- 1.一辆越野车在沙漠中行驶32.5千米耗油5.2升.它要跨越的无人区总路程为1303千米,至少要准备多少升汽油?(得数保留整数)
- 住院时我很难过,怎么翻译?
猜你喜欢