设A是m*n的矩阵,证明若对任意m维行向量x和n维列向量,都有xAy=o,则A=0
人气:438 ℃ 时间:2020-01-30 06:30:13
解答
证明: 设 A = (aij).
取xi 是第i个分量为1其余分量为0的m维行向量, i=1,2,…,m;
取yj是第j个分量为1其余分量为0的n维列向量, j=1,2,…,n.
则有 xi A yj = aij,i=1,2,…,m; j=1,2,…,n .
若对任意m维行向量x和n维列向量,都有xAy=o, 则必有
xi A yj = aij = 0,i=1,2,…,m; j=1,2,…,n
故有 A = 0.
推荐
- 设A为m×n矩阵,证明:若任一n维向量都是AX=0的解,则A=0
- 设A为m*n矩阵,证明:若任一个n维向量都是AX=0的解,则A=0
- 证明设A为s×m矩阵,B为m×n矩阵,X为n维未知列向量,证明齐次线性方程组ABX=0与BX=0同解的充要条件是
- 证明n维矩阵存在n个线性无关列向量,则矩阵满秩`
- 设A是m*n矩阵,x是n维向量,b是m维向量,且R(A)=r,为什么当r=m时,Ax=b才有解?
- 对于Bx/[(x+A)^(2)]的分解,为什么要这样分解
- I began to learn__a bicycle at seven years old
- 绿孔雀属于什么动物 是什么类型的动物
猜你喜欢