X1=a>0,Y1=b>0,Xn+1=(Xn+Yn)/2,Yn+1=(Xn*Yn)^1/2,求证数列Xn,Yn收敛并求其极限.其中两个n+1均为下角标
人气:365 ℃ 时间:2019-08-18 10:00:05
解答
(a+b)/2>=(ab)^1/2
Yn+1=(Xn*Yn)^1/2小于=(Xn+Yn)/2=Xn+1
Xn+1-Xn=(Yn-Xn)/2小于0所以Xn单调减少
xn小于a大于0
Yn+1/Yn=(Xn/Yn)^1/2大于1所以Yn单调增加
Yn大于b小于a
单调有界数列必有极限
我只能证明他们极限相等,没法求呀
推荐
- X1=a>0,Y1=b>0,Xn+1=(Xn+Yn)/2,Yn+1=(Xn*Yn)^1/2,求证数列Xn,Yn的极限相等.其中两个n+1均为下角标
- 用数列极限的定义证明:数列{Xn}有界,又数列{Yn}的极限是0,证明数列{XnYn}的极限是0
- 数列{xn}收敛,数列{yn}发散,则数列{xn+yn}{xn-yn}{xn·yn}收敛性如何?
- 设数列Xn收敛于0,数列Yn有界.证明limxnyn=0.当yn无界时,情况如何,举出适当的例子说明.
- 设数列{Xn}有界,又数列{Yn}的极限是0,证明:{XnYn}的极限是0
- 急30分钟就要已知点A(4,x),B(y,-3),若AB平行x轴,且线段AB的长为5则xy=
- 帮解下数学题
- My name is {Jim Green}.(对括号部分提问)
猜你喜欢