>
数学
>
线性代数问题,已知A为2n+1阶正交矩阵且|A|=1,证A必有特征值1
人气:177 ℃ 时间:2019-12-29 13:38:11
解答
用A'表示A的转置,E表示单位阵.
由A为正交阵,有A'A = E.
于是|E-A| = |A'A-A|
= |(A'-E)A|
= |A'-E|·|A|
= |A'-E| (∵|A| = 1)
= |(A-E)'| (∵E' = E)
= |A-E|
= |-(E-A)|
= (-1)^(2n+1)·|E-A|
= -|E-A|.
因此|E-A| = 0,即1是A的一个特征值.
推荐
线性代数中怎么证明正交矩阵的特征值是1或者-1?
已知A为2n+1阶正交矩阵,且lAl=1,试证A必有特征值1
线性代数问题:设A为正交阵,即A^T A=E,且|A|=-1,证明-1为A的特征值?
如何证明正交矩阵的特征值为1或-1
正交矩阵的特征值只能是1或-1
The road of life,the end of the ends,this start would begin.
世界大多数农作物和动植物都能在我国找到适合生长的地区,是因为我国( ) A.季风气候显著 B.夏季普遍高温 C.气候复杂多样 D.雨热同期
周二是我最忙的一天怎么翻译成英文
猜你喜欢
以“团结就是力量”为题,写一篇蚂蚁搬运东西的作文
高中理科数学题(排列组合)
脑筋急转弯:小明的爸爸为什么要天天去看医生
20+3.57×6.72-3.57×7.9-6.43×(7.9-6.72) 如何简便计算
在我们生活中,以立方米作体积单位的物体有( ),以立方分米作体积单位有( )以升作容积单位的物体有(
如果乙酸乙酯和氢氧化钠溶液均为浓溶液,试问能否用此法求得k值?为什么?
看下英语句子用什么从句
65除以4加37除以4减26除以4的简便算式
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版