已知双曲线的中心在原点,焦点F1、F2在坐标轴上,其中渐近线方程为x^2-y^2=0,且过(4,-根号10)
(1) 求双曲线方程
(2)若点M(3,m)在双曲线上,求证MF1垂直MF2
人气:193 ℃ 时间:2019-08-18 22:55:00
解答
(1)设所求双曲线的标准方程为:x^2/a^2-y^2/b^2=1.由渐近线方程,得:b/a=±1,b=±a,且双曲线过(4,-√10),故4^2/a^2-(-√10)^2/b^2=1., 16/a^2-10/(a)^2=1.a^2=6, b^2=a^2=6, ∴x2-y^2=6. --...
推荐
- 已知双曲线的中心在原点.焦点F1,F2在坐标轴上,离心率为根号2,且过点(4,-根号10).
- 已知中心在原点的双曲线C的一个焦点是F1(-3,0),一条渐近线的方程是根号5-2y=0.(1)求双曲线C的方程
- 已知双曲线的中心在原点,焦点F1,F2在坐标轴上,一条渐近线方程为y=x,且过点(4,- 10 ). (1)求双曲线
- 已知双曲线的中心在原点,两个焦点F1,F2分别为(5,0)和(-5,0),点P在双曲线上且PF1⊥PF2,且△PF1F2的面积为1,则双曲线的方程为( ) A.x22-y23=1 B.x23-y22=1 C.x24-y2=1 D.x2-y
- 已知双曲线的中心在原点,焦点F1 F2在坐标轴上,一条渐近线方程为y=x,且过(4,-√10)
- 英语翻译
- 二次函数fx)的最小值是1,且f(0)=f(2)=3
- 已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐
猜你喜欢