函数在[0,2]连续,在[0,2]上可导,f(0)+f(1)=2,f(2)=1,证明至少存在一点使得f'(ζ)=0
人气:358 ℃ 时间:2019-08-16 20:16:59
解答
f(0)=a
f(1)=2-a
拉格朗日中值定理
((f(2)-f(0))/2=(1-a)/2=f'(m)
f(2)-f(1)=a-1=f'(n)
f'(m)*f'(n)=-(1-a)^2/2大神辛苦,我实在是没有数学天赋,白复习了3天,微积分还是要挂。。。。。O(∩_∩)O谢谢
推荐
- 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:至少存在一点a属于(0,1),使f(a)
- 若函数f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=f(1)=0,证明:在(0,1)内必存在一点ξ,使得f''(ξ)=2f'(ξ)/(1-ξ). 用泰勒公式证明麻烦写下详细过程
- 设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=0.证明:至少存在一点ε∈(0,1),使f'(x)=-f(ε)/ε.
- 设函数f(x)在区间【0,1】上可导,且f(1)=0,证明至少存在一点$在(0,1)内,使得2$f($)+$*$f'$)=0
- 已知函数f(x)在[0,1]连续,在(0,1)可导,且f(1)=0,证明(1)在(0,1)内至少存在一点ξ,
- 一道解答题一道证明题(顺便说一下解答题和证明题的区别),
- 利用因式分解法计算732的平方-268的平方
- 填写反义词,组成语.
猜你喜欢