已知函数f(x)在[0,1]连续,在(0,1)可导,且f(1)=0,证明(1)在(0,1)内至少存在一点ξ,
使f(ξ)导数=-f(ξ)/ξ
人气:395 ℃ 时间:2019-08-16 09:10:50
解答
令G(x)=xf(x),然后对G用罗尔定理.
推荐
- 设函数f(x)在[0,1]上可导,且满足f(1)=0,求证:在(0,1)内至少存在一点ξ,使f′(ξ)=-f(ξ)ξ.(提示:利用中值定理证明).
- 设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=0.证明:至少存在一点ε∈(0,1),使f'(x)=-f(ε)/ε.
- 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明在(0,1)内至少存在一点&,
- 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:至少存在一点a属于(0,1),使f(a)
- 函数在[0,2]连续,在[0,2]上可导,f(0)+f(1)=2,f(2)=1,证明至少存在一点使得f'(ζ)=0
- Your father and mother who plays more important roles in your daily life
- 已知多项式A=x^2-xy+y^2;B=x^2+xy+y^2 (1) 求2A-2B
- 甲乙两人同时从AB两地相向而行,甲行6小时与乙在距中点12千米相遇,这时乙行了42千米甲每小时行多少千米?
猜你喜欢