证明在△ABC中.sinA/(sinB+sinC)+sinB/(sinC+sinA)+sinC/(sinA+sinB)<2
证明
人气:472 ℃ 时间:2019-10-23 06:30:07
解答
sinA/(sinB+sinC)+sinB/(sinC+sinA) + sinC/(sinA+sinB)=1/(sinB/sinA)+(sinC/sinA)+1/(sinC/sinB)+(sinA/sinB) + 1/(sinA/sinC)+(sinB/sinC)=c/(a+b)+a/(b+c)+b/(a+c)因此只要证明:c/(a+b)+a/(b+c)+b/(a+c)<2即可...
推荐
猜你喜欢