1 |
2 |
1 |
2 |
(2)假设当n=k时等式成立,
即1−
1 |
2 |
1 |
3 |
1 |
4 |
1 |
2k−1 |
1 |
2k |
1 |
k+1 |
1 |
k+2 |
1 |
2k |
则1−
1 |
2 |
1 |
3 |
1 |
4 |
1 |
2k−1 |
1 |
2k |
1 |
2k+1 |
1 |
2k+2 |
1 |
k+1 |
1 |
k+2 |
1 |
2k |
1 |
2k+1 |
1 |
2k+2 |
1 |
k+2 |
1 |
2k |
1 |
2k+1 |
1 |
2k+2 |
综合(1)(2),等式对所有正整数都成立.
1 |
2 |
1 |
3 |
1 |
4 |
1 |
2n−1 |
1 |
2n |
1 |
n+1 |
1 |
n+2 |
1 |
2n |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
2k−1 |
1 |
2k |
1 |
k+1 |
1 |
k+2 |
1 |
2k |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
2k−1 |
1 |
2k |
1 |
2k+1 |
1 |
2k+2 |
1 |
k+1 |
1 |
k+2 |
1 |
2k |
1 |
2k+1 |
1 |
2k+2 |
1 |
k+2 |
1 |
2k |
1 |
2k+1 |
1 |
2k+2 |