已知圆系x²+y²-2ax+2(a-2)y+2=0,其中a≠1,且a∈R,则该圆系恒过定点?
人气:214 ℃ 时间:2020-06-12 13:45:55
解答
对式子 X^2+Y^2-2AX+2(A-2)Y+2=0 进行整理,
含有A的放在一起,不含A的放在一起.
则有 2A(Y-X) + X^2 + Y^2 -4Y + 2 = 0
求恒过某点,
于是,
2A(Y-X)=0 且 X^2 + Y^2 -4Y + 2 = 0
解得 X = Y =1
恒过(1,1)
推荐
- 已知圆系x^2+y^2-2ax+2(a-2)y+2=0,其中a≠1,且a∈R ,则该圆系恒过定点
- 已知圆C1:X²+y²-10x-6y+32=0,动圆C2:x²+y²-2ax-2(8-a)y+4a+12=0(a∈R)
- 求f(x)=x²-2ax+2在【2,4】上的最小值
- 已知圆X^2+Y^2-2AX+2(A-2)Y+2=0其中a不等于1且a属于R则该圆系恒过定点()
- 求函数f(x)=x²-2ax+1,x∈[1,3]的最小值.
- 把-1,+2,-3,+4,-5,+6,-7,+8,-9填入方框中,使每行每列每条对角线上的三个数满足乘积是负数,绝对值的和相
- 一堆煤,计划每天烧45千克,可以烧32天.实际每天比计划少烧5千克,这推煤实际烧了多少天?
- 若以a为底五分之二的对数小于1,则a取值范围?
猜你喜欢