设函数f(x)在【0,2】上连续,在(0,2)内可导,且f(0)+f(1)=2.f(2)=1,证明;至少存在一点属于(0,2)使得f(x)=0
人气:170 ℃ 时间:2019-08-19 05:20:40
解答
f(0)+f(1)=2,
[f(0)+f(1)]/2=1,由介值性定理:至少存在c属于[0,1],使f(c)=[f(0)+f(1)]/2=1
由于f(2)=1,由罗尔定理:至少存在一点x属于(c,2)(x属于(0,2))使得f’(x)=0
推荐
- 设函数f(x)在闭区间(0,2)上连续,在(0,2)上可导,且f(1)=1,f(0)=f(2)=0,证明:存在a属于(0,2),使得f(a)'+f(a)=1
- 设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(1)=0.证明:至少存在一点ε∈(0,1),使f'(x)=-f(ε)/ε.
- 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明在(0,1)内至少存在一点&,
- 设函数f(x)在[a,b]上连续,在(a,b)内可导(0
- 设函数f(x)在区间【0,1】上可导,且f(1)=0,证明至少存在一点$在(0,1)内,使得2$f($)+$*$f'$)=0
- there isn't much ___ i can do
- 怎样证明生石灰的主要成分是Ca(OH)2
- 狼牙山五壮士中的在顶峰在体现了什么决心和英雄气概
猜你喜欢