设函数f(x)在区间[a,b]上连续,证明:∫f(x)dx=f(a+b-x)dx
函数都是上线为b 下线为a
人气:352 ℃ 时间:2019-08-19 00:14:34
解答
证明:做变量替换a+b-x=t,则dx=-dt,当x=b,t=a,当x=a,t=b于是∫(a,b)f(a+b-x)dx =-∫(b,a)f(t)dt= ∫(a,b)f(t)dt=∫(a,b)f(x)dx即∫(a,b)f(x)dx=∫(a,b)f(a+b-x)dx 命题得证.【注:紧跟积分符号后面的为积分区间】...
推荐
- 设函数f(x)在对称区间【-a,a】上连续,证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx
- 证明:若函数f(x)和g(x)在区间[a,b]上连续,则有│ ∫ f(x)dx│≤∫ │f(x)│dx. ∫ 符号的上下分别是b,a
- 设函数f(x)在区间[0,1]上连续,证明∫[∫f(t)dt]dx=∫(1-x)f(x)dx
- 设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,b)内至少存在...
- 设函数f(x) 在区间( -a ,a)上连续,证明 f 上a 下 0 f(x)dx= f 上a 下 0 (f (x) +f(-x)dx
- 一块体积为150cm³的铁块完全浸没在一个盛有水的圆柱形容器里,这个圆柱形容器底面直径为10cm求水面上
- 已知y=y1+y2,y1与x成正比例,y2与x-3成反比例,当x=4和x=1时,y的值都等于3,求x=9时,y的值.
- 1.已知函数发f(x)=asinx+btanx+1满足f(5)=7,则f(-5)的值为( )
猜你喜欢