设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,b)内至少存在...
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且∫(a,b)f(x)dx=f(b)(b-a).证明:在(a,b)内至少存在一点ζ,使f'(ζ)=0
参考。貌似老师说是先用积分中值定理再用罗尔定理。
人气:461 ℃ 时间:2019-08-20 04:39:36
解答
∫(a,b)f(x)dx=F(b)-F(b)因此∫(a,b)f(x)dx=f(b)(b-a)[F(b)-F(a)]/(b-a)=f(b)由拉克朗日定理,存在ξ使:[F(b)-F(a)]/(b-a)=f(ξ)ξ∈(a,b)b>ξ>a=>f(ξ)=f(b)由l罗尔定理,存在ζ∈(ξ,b)使f′(ζ)=0ζ∈(ξ,b)=>ζ∈...
推荐
- 设函数f(x)在区间[0,2a]上连续,且f(0)=f(2a),证明:在[0,a]上至少存在一点ξ,使f(ξ)=f(ξ+a).
- 设函数f(x)在区间[0,1]上连续,证明∫[∫f(t)dt]dx=∫(1-x)f(x)dx
- 证明:若函数f(x)和g(x)在区间[a,b]上连续,则有│ ∫ f(x)dx│≤∫ │f(x)│dx. ∫ 符号的上下分别是b,a
- 设函数f(x)在区间[a,b]上连续,证明:∫f(x)dx=f(a+b-x)dx
- 设函数f(x)在对称区间【-a,a】上连续,证明∫(-a,a)f(x)dx=∫(0,a)[f(x)+f(-x)]dx
- 怎样证明圆内接四边形的对角互补
- 曲高和寡
- 1/2比0.25等于多少?
猜你喜欢
- 带言语形容随便乱说的话
- 已知关于x的方程4x^2-8mx+n^2=0,其中m,n分别是一个等腰三角形的腰长和底边.若方程两实数根之差的绝对值为8,等腰三角形的面积是12,求这个三角形的周长.
- 如图,在△ABC中,∠ACB=90°,BF平分∠ABC,CD⊥AB于点D,与BF交于点G,GE∥AC.求证:CE与FG互相垂直平分.
- I think ___(十几岁的少年)should be allowed to go out with their firends.谁若知道就告诉我,
- -5a+0.3a-2.7a
- 在空间四边形ABCD中,△BCD为正三角形,△ABD为等腰直角三角形,且∠BAD=90°,
- 有甲、乙两人,其中,甲只说假话,而不说真话;乙则是只说真话,不说假话.
- 元素周期律,