设f(x)=1/3x^3+1/2x^2+2ax,若f(x)在(2/3,正无穷)上存在单调递增区间,求a的取值范围
人气:322 ℃ 时间:2019-08-21 00:30:59
解答
函数f(x)=(1/3)x³+(1/2)x²+2ax.
求导,f'(x)=x²+x+2a.
由题设可知:
关于x的不等式x²+x+2a≥0.
其解集M与区间(2/3,+∞)的交集非空.
或者说,不等式2a≥-(x²+x)
必有解在区间(2/3,+∞)内.
∴问题可化为,求函数g(x)=-x²-x在(2/3,+∞)上的最大值(或上确界).
显然,在(2/3,+∞)上,恒有:g(x)<g(2/3)=-10/9.
∴应有:2a≥-10/9
∴a≥-5/9
推荐
- (2014•呼伦贝尔一模)若函数f(x)=13x3-12ax2+(a-1)x+1在区间(1,4)内为减函数,在区间(6,+∞)为增函数,则实数a的取值范围是( ) A.(-∞,2] B.[5,7] C.[4,6] D.(-∞,5]∪[7,
- 已知函数f(x)=-1/3x^3+1/2x^2+2ax 若f(x)在{1/4,正无穷}上存在单调增区间,求a...
- 已知f(X)=-1/3x^3+2ax^2-3a^2x+b,0
- 设f(x)=-1/3x的3次方+1/2x的平方+2ax,若f(x)在(2/3,正无穷)上存在单调递增区间,求a取值范围,
- 已知函数f(x)=-1/3x^3+1/2x^2+2ax (1)若f(x)在{2/3,正无穷}上存在单调增区间,求...
- 英语翻译
- 一个农户用24米长的篱笆围成一排一面的靠墙、大小相等且彼此相连的三个长方形鸡舍,要使鸡舍的总面积为
- 英语最高级别是几级?
猜你喜欢