已知P点在圆(x+1)平方+y平方=1上移动,Q点在椭圆x平方/9+y平方/4=1上移动,求绝对值PQ的最小值
人气:210 ℃ 时间:2020-03-26 09:29:44
解答
令圆(x+1)^2+y^2=1的圆心为A,则点A的坐标为(-1,0).
连结AQ交⊙A于B,在⊙A上取点B外的任意一点为C,则A、C、Q构成了一个三角形.
显然有:|CQ|+|AC|>|AQ|=|BQ|+|AB|,而|AC|=|AB|,
∴|CQ|>|BQ|.
∴点P与点B重合,否则|PQ|就不是最小的.
∵|AP|是⊙A的半径,为定值,∴要使|PQ|取得最小值,就需要|AQ|取得最小值.
∵点Q在椭圆x^2/9+y^2/4=1上,∴可令点Q的坐标为(3cosθ,2sinθ).
∴|AQ|=√[(3cosθ+1)^2+(2sinθ-0)^2],
∴|AQ|^2=(3cosθ+1)^2+4(sinθ)^2=9(cosθ)^2+6cosθ+1+4(sinθ)^2,
∴|AQ|^2=5(cosθ)^2+6cosθ+5=5(cosθ+3/5)^2+16/5.
显然,当cosθ+3/5=0时,|AQ|^2有最小值=16/5,∴|AQ|的最小值=4/√5=4√5/5.
∴|PQ|的最小值=|AQ|的最小值-|AP|=4√5/5-1.
即:|PQ|的最小值是 4√5/5-1.
推荐
- 已知P点在圆(x+1)平方+y平方=1上移动,Q点在椭圆x平方/9+y平方/4=1上移动,求绝对值PQ的最小值
- 已知点P(-1,-3),F为椭圆X^2/16+y^2/12=0的右焦点,点Q在椭圆上移动,当|QF|+1/2|PQ|取最小值时,Q点坐标多少
- 已知P点在圆x2+(y-4)2=1上移动,Q点有椭圆上移动,Q点在椭圆上移动,试求|PQ|的最大值.
- 点P在圆x^2+(y-2)^2=1/4上移动,点O在椭圆x^2+4y^2=4上移动,求PQ的最大值与最小值
- 点P在圆x^2+(y-2)^2=1/4上移动,点Q在椭圆x^2+4y^2=4上移动,求PQ的最大值及Q点的坐标.
- 《西江月夜行黄沙道中》诗句表达了诗人怎样的思想感情?
- 翻译One shoud eat to live,not live to eat.
- 求现实主义古诗,如白居易的《卖炭翁》,宋/张俞《蚕妇》
猜你喜欢
- “全等三角形的对应边相等”的 逆命题 是真命题还是假命题?
- 若(a+1)^(-1/2)
- 一个梯形的上底是6分米,下底是1米,高是5米,高是5米,面积是多少平方米
- 用英语描述"广州的故事"和"爱广州,迎亚运"
- 已知代数式6x²+bx-y+5-2ax²+x+5y-1的值与字母x无关,求a、b的值
- Nina,who was eight ____ old,brought her report card home___school.She was very ____,because her
- 一道数学题,是关于一次函数的数学题
- what's wrong with you中文