已知P点在圆x2+(y-4)2=1上移动,Q点有椭圆上移动,Q点在椭圆上移动,试求|PQ|的最大值.
已知P点在圆x^2+(y-4)^2=1上移动,Q点有椭圆上移动,Q点在椭圆x^2/4+y^2=1上移动,试求|PQ|的最大值.
人气:446 ℃ 时间:2020-01-29 13:09:38
解答
设p点坐标x=sina,y=cosa+4
设Q点坐标x=2sinb,y=cosb
PQ距离为[(sina-2sinb)^2+(cosa+4-cosb)^2]^(1/2)
...
利用三角函数公式和性质求啦
推荐
- 已知点P在圆C:x²+(y-4)²=1上移动,点Q在椭圆x²/4+y²=1上移动,求线段PQ的最大值
- 点P在圆x^2+(y-2)^2=1/4上移动,点Q在椭圆x^2+4y^2=4上移动,求PQ的最大值及Q点的坐标.
- 已知P点在圆(x+1)平方+y平方=1上移动,Q点在椭圆x平方/9+y平方/4=1上移动,求绝对值PQ的最小值
- 点P在圆x^2+(y-2)^2=1/4上移动,点O在椭圆x^2+4y^2=4上移动,求PQ的最大值与最小值
- 点P在圆x^2+(y-2)^2=4上移动,点Q在椭圆x^2+4y^2=4上移动,求PQ最值及相应点坐标
- 2√2是无理数吗?
- 请问下米与公斤怎么换算
- 甲乙丙三人乘火车,每人行李都超过了免费的重量,需另加行李费,甲支付了3元,已支付了5元,并支付了7元.三人行李共重90千克,如这些行李一人携带,需支付35永远,丙带的行李重多少千克
猜你喜欢