f(-c,0)是双曲线x^2/-y^2/b^2=1 (a>0 b>0)的做焦点 p是抛物线y^2=4cx上一点 直线fp与圆x^2+y^2=a^2相
切于点e 且pe=fe 若双曲线的焦距为2倍根号5+2 则双曲线的实轴长
为
人气:432 ℃ 时间:2019-10-30 04:29:08
解答
不好意思,之前把焦距看成2﹙√5 +2﹚
既然焦距是2√5 +2即c=√5 +1
那么解法还是下面解法,最后c代换换一下
抛物线y^2=4cx焦点F2(c,0)
∵E为直线FP与以原点为圆心a为半径的圆的切点
又PE=EF
∴OE为直线FP的中垂线 (O为原点)
∴OP=OF=c
又FF2=2c,O为FF2中点,OP=c
∴∠FPF2=90º(直角三角形中,直角顶点与斜边中点的连线长度为斜边的一半)
又△FEO∽△FPF2
∴PF2/EO=FF2/FO=2c/c=2
又EO=a
∴PF2=2a
作PQ⊥QF于Q(即PQ长即P到x= -c的距离)
∴PQ=PF2=2a
又Rt△FPQ∽Rt△F2FQ令PF=2x=2EF
∴QP/PF=PF/FF2
即2a/(2x)=(2x)/(2c)
即x²=ac=EF²
∴在Rt△FEO中
OF²=EF²+EO²
即c²=ac+a²
即a²+(1+√5)a-(1+√5)²=0
△=5(1+√5)²
√△=√5*(1+√5)=√5 +5
a1= (-1-√5+√5 +5)/2= 4/2=2
a2= (-1-√5-√5 -5)/2= (-2√5-6)/2=-√5 -3 (舍)
∴实轴长为4
推荐
- 已知抛物线y^2=2px(p>0)的焦点F恰为双曲线x^2/a^2-y^2/b^2=1(a>0,b>
- 已知抛物线x2=2py(p>0)的焦点F恰好是双曲线y2a2−x2b2=1的一个焦点,且两条曲线交点的连线过点F,则该双曲线的离心率为( ) A.2 B.1±2 C.1+2 D.无法确定
- 过焦点斜率为1的直线与双曲线左右支各有一个焦点若抛物线y^2=4cX的准线被双曲线截得弦长为2b(e^2)√2求e
- 如图,已知抛物线y2=2px(p>0)的焦点F恰好是双曲线x2a2−y2b2=1(a>0,b>0)的右焦点,且两条曲线交点的连线过点F,则该双曲线的离心率为( ) A.2 B.2 C.2+1 D.2−1
- 抛物线顶点在原点,它的准线过双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的一个焦点,且垂直于双曲线的实轴,又P(3/2,√6)是抛物线和双曲线的一个交点,求抛物线和双曲线的方程
- 一件羽绒服按八五折出售的价格是340元,咋这件羽绒服的原价是多少元
- 按自然数从小到大为标准次序,求 1 3…(2n-1) (2n) (2n-2)…2的逆序数.
- 蛋糕房制一种蛋糕,每个需要0.32千克面粉.王师傅领了5千克面粉做蛋糕,他最多可以做几个生日蛋糕?
猜你喜欢
- 一块长方形的草地的长和宽分别为20米和15米,在它四周外围环绕着宽度相等的小路.已知小路的面积为246平方米,求小路的宽度.
- 电能表
- 中秋节来源 50字
- 1.在玻璃管中放入铁和氧化铁的混合物6.00g,通入足量的纯净一氧化碳并加强热,当氧化铁全部被还原为铁时,最终得到固体残留物5.04g.计算:原混合物中铁单质的质量分数.
- 一个修路队8天修了一条路的3/8,正好是240米,要修的路有多长
- 向饱和NaCl溶液中加入少量KCl固体
- 如图,平行四边形ABCD,E为AD的中点,AC、BE相交于点F,S△EFC=1,则S平行四边形ABCD=
- 用迈组词