直线L经过双曲线右焦点F与其一条渐近线垂直且垂足为A,与另一条渐近线交于B点,AF=1/2FB,则双曲线的离心率为
A √ ̄3/4 B 2√ ̄3/3 C √ ̄3 D 2
人气:251 ℃ 时间:2019-08-22 12:13:39
解答
答案选D.联立这条直线和另一条渐近线的方程,即y/x-c=-a/b,y=-b/a,求得交点的横坐标x=a^2c/(a^2-b^2).利用平面上两点间的距离公式,求得交点到原点的距离,让它等于c,即原点到右焦点的距离,这是利用三角形三线重合性质.在所得的式子中将b^2用c^2-a^2替换,然后经过变形得到e^4-5e^2+4=0,求得e=2,e=1(舍去).
推荐
猜你喜欢
- 请问I am lily who live in Paris.和 I am lily who lives in Paris 哪个正确
- 一个长方体冰柜,从里面量90cm,宽50cm,深50cm.它的容积是多少立方分米
- 美学中的名词解释 .
- “1.5*X的值等于3.6:4.8的值”怎么算比例(数学)
- 英语翻译
- 复合重句 中,where 和which用法有点歧义,如下题
- 甲乙两人相向而行甲的速度是20千米/小时,乙的速度是18千米/小时,他们在离中点3千米是相遇,问全?
- 在四边形ABCD中,AB>CD.E.F分别是对角线BD.AC的中点,求证:EF>1/2(AB-CD)