A=π/4
B=π/6
sinA=√2/2,sinB=1/2
(1)
sin(A+B)=sinAcosB+sinBcosA
=(√2/2)*(√3/2)+(√2/2)*(1/2)
=(√6+√2)/4
(2)
a-b=√2(√2-1)
a/b=sinA/sinB=√2
a=b√2
b(√2-1)=√2(√2-1)
b=√2,a=2
A+B=5π/12
C=π-5π/12=7π/12
sinC=sin(A+B)=(√6+√2)/4
a/sinA=c/sinC
c=a*(sinC/sinA)
=2*(√6+√2)*√2/4
=√3+1
