已知数列{An},An+1=2(n+1)+An,求数列An通向
求详解
人气:180 ℃ 时间:2020-04-21 21:18:25
解答
A(n+1)=An+2(n+1)
A(n+1)-An=2(n+1)
即An-A(n-1)=2n
A(n-1)-A(n-2)=2(n-1)
.
A3-A2=2*3
A2-A1=2*2
以上各式相加得:
An-A1=2*(2+3+...+n)=2*(2+n)*(n-1)/2=(n+2)(n-1)
故An=A1+(n+2)(n-1)
题目中是否有A1=?
推荐
- 设A1=2,An+1=2/(1+An),求An通项..
- 已知数列An是各项均为正数的等差数列,lga1,lga2,lga4成等差数列,又Bn=1/A(2^n),n=1,2,3,.
- 数列{an}满足a1=1/2,an+1=1/2-an(n属于正整数)
- 由数列的递推公式求数列的通项公式.
- 关于数列的
- 补全对话(选择题)
- 四字词语接龙一清二白接下去是什么
- 音标为 u 的r__d; ___t 是什么单词啊
猜你喜欢