> 数学 >
大学概率题求解
设二维随机变量(X,Y)d的概率密度为f(x,y)=1,(x,y)属于D,f(x,y)=0,(x
,y)不属于D.
其中D是y=x,y=-x,x=1所围成的区域.验证:X与Y是不相关的,但X与Y不独立.
人气:317 ℃ 时间:2020-02-06 00:09:29
解答
它的原理:对f(x,y)的联合概率密度分别关于x和y求积分,得到各自的密度函数.相关性是求x,y的协方差cov(x,y),独立性则是检测等式f(x,y)=f(x)f(y)是否成立.
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版