三角形abc的三边分别为a,b,c,o是三角形abc的外心,od垂直bc,oe垂直ac,of垂直ab,则od:oe:of=?
人气:332 ℃ 时间:2019-10-19 20:58:17
解答
连接OB,OC
∵O是△ABC的外心
∴∠BOC=2∠A
∵OD⊥BC
∴∠BOD=∠A
设△ABC外接圆半径为R,
则OD=Rcos∠BOD=Rcos∠A
同理可得:OE=RcosB,OF=RcosC
∴OD:OE:OF=cosA:cosB:cosC
推荐
- 已知:如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D、E、F分别是垂足,且AB=10,BC=8,CA=6,则点O到三边AB、AC和BC的距离分别等于( ) A.2、2、2 B.
- 等边三角形ABC,O为三角形内任意一点,OD垂直AB,OF垂直BC,OE垂直AC,求OD+OE+OF=三角形的高
- 在三角形ABC中,角ABC=90度,点O为三角形ABC的三条角平分线的交点,OD垂直于BC,OE垂直于AC,OF垂直于AB,D,E,F是垂足,且AB=8,AC=10,则点O到AB,AC,BC的距离分别是()
- 如图,O是△ABC的外心,OD⊥BC,OE⊥AC,OF⊥AB,则OD:OE:OF=( ) A.a:b:c B.1a:1b:1c C.cosA:cosB:cosC D.sinA:sinB:sinC
- 如图所示,O为等边△ABC内任意一点,OD∥BC,OE∥AC,OF∥AB,并且D、E、F分别在AB、BC、AC上,求证:OD+OE+OF=BC.
- NH4HCO3和K2SO4可以用H2SO4鉴别吗?
- be sure to do sth和be sure of doing sth的区别
- That boy does not have ________(control) .He always talks in class.
猜你喜欢