用数学归纳法证明: 对任何正整数n,(3n+1)7^n-1能被9整除
人气:183 ℃ 时间:2019-08-17 12:08:55
解答
(1)当n=1时 (3*1+1)*7-1=27能被9整除
(2)假设当n=k时 (3k+1)*7^k-1能被9整除
则当n=k+1时 [3(k+1)+1]*7^(k+1)-1=[21k+28]*7^k-1
=(3k+1)*7^k-1+(18k+27)*7^k
=[(3k+1)*7^k-1]+9(2k+3)*7^k
括号中的代数式能被9整除 9(2k+3)*7^k能被9整除
所以当n=k+1时 [3(k+1)+1]*7^(k+1)-1能被9整除
综合(1)(2)可知 对于任意自然数n 有(3n+1)*7^n-1能被9整除
推荐
猜你喜欢
- 已知一个直角三角形纸片OAB,其中∠AOB=90,OA=2,OB=4,如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
- 《爱的教育》 形式
- i want tu runaway with you and never look back 什么意思?
- 汽车每小时比自行车多行75千米,如果汽车每小时的路程是自行车的6倍,那么汽车每小时行多少千米.
- △ABC的三边长分别为3、4、5,P为平面ABC外一点,它到其三边的距离都等于2,且P在平面ABC上的射影O位于△ABC的内部,则PO等于( ) A.1 B.2 C.32 D.3
- 英语翻译
- 英语翻译
- 地球的半径为R,地球表面处物体所受重力为mg