已知四阶方阵A=(a1,a2,a3,a4),a1,a2,a3,a4均为四维列向量,其中a2,a3,a4线性无关,a1=2a2-a3.
若b=a1+a2+a3+a4,求线性方程组Ax=b的通解.
人气:390 ℃ 时间:2020-02-06 04:05:01
解答
由已知,R(A) = 3
所以 Ax=0 的基础解系含1个向量
因为 a1=2a2-a3
所以 (1,-2,1,0)^T 是 Ax=0 的基础解系
又因为 b=a1+a2+a3+a4
所以 (1,1,1,1)^T 是 Ax=b的解
所以通解为 (1,1,1,1)^T + k(1,-2,1,0)^T.
推荐
- a1,a2,a3,a4,a5是四维向量,则一定线性_____
- 设4阶方阵A通过列分块后为(a1,a2,a3,a4) b是一个4维列向量 且满足a1,a2无关 a1,a2,a3,a4相关
- 若四阶方阵A 的列向量组a1,a2,a3,a4满足条件2a1+a2-a3+a4=0,则AX=a1的一个解为?
- 已知向量组a1,a2,a3,a4线性无关,则( ).
- 设四维向量组a1=(1+c,1,1,1)^T,a2=(2,2+c,2,2)T,a3=(3,3,3+c,3)T,a4=(4,4,4,4+c)T,
- 一个50千克的物体自由下落时,重量是多少
- 用一个平面截一个棱柱无论以何种方式切割得到的截面一定是什么图形?
- 再塑生命 课后字词造句
猜你喜欢