已知数列{an}是首项为a1>0,公比q>-1的等比数列,若数列{bn}通项bn=a[n+1]-ka[n+2](n∈N+)
已知数列{an}是首项为a1>0,公比q>-1的等比数列,若数列{bn}通项bn=a[n+1]-ka[n+2](n∈N+),数列{an}{bn}的前n项和分别为Sn和Tn,如果Tn>kSn对一切正整数n都成立,求实数k的取值范围.
a[n+1]-ka[n+2]中[n+1]、[n+2]都是下脚标
题中说了q>-1!
人气:141 ℃ 时间:2020-04-15 17:54:55
解答
楼上几位的分类不完整额.
an=a1q^(n-1)
则Sn=a1(1-q^n)/(1-q),由于q>-1且q≠0可知Sn>0
bn=a[n+1]-ka[n+2]=a1q^n(1-kq)则{bn}也是等比数列,公比为q
且b1=a2-ka3=a1q(1-kq)
则Tn=a1q(1-kq)(1-q^n)/(1-q)
又Tn>kSn对于一切n∈N及满足条件的所有q都成立,
即a1q(1-kq)(1-q^n)/(1-q)>ka1(1-q^n)/(1-q),
得k
推荐
- 已知数列{an}是首项a1>0,q>-1且q≠0的等比数列,设数列{bn}的通项bn=an+1-kan+2(n∈N),数列{an}、{bn}的前n项和分别为Sn,Tn.如果Tn>kSn对一切自然数n都成立,求实数k的取值范围.
- 已知数列{an}满足,a1=1,a2=2,an+2=(an十an+1)/2,n∈N.〈1〉令bn=an+1-an,证明:{bn}是等比数列:求{an...
- 已知等比数列{an}的首项a1>0,公比q>-1,q≠0,设数列{bn}的通项公式bn=an+1+an+2(n∈N*),数列{an},{bn}的前n项和分别记为An,Bn,试比较An与Bn的大小.
- 已知数列{an}满足a1=1,a2=2,an+2=an+an+12,n∈N*. (1)令bn=an+1-an,证明:{bn}是等比数列; (2)求{an}的通项公式.
- 已知{an}是等比数列 首项a1=1,公比为q且bn=a[n+1] -an判断数列{bn}是否为等比数列
- 已知向量a,b满足向量a的模=1,向量a*(向量a-向量b)=0,则向量b的模的取值范围是?
- 解释下面加点词的意思
- gee,do i know u,that such emotional young man
猜你喜欢