∴x1+x2=-2,x1•x2=-2007.
(1)x12+x22=(x1+x2)2-2x1•x2=(-2)2-2×(-2007)=4018;
(2)
1 |
x1 |
1 |
x2 |
x1+x2 |
x1•x2 |
−2 |
−2007 |
2 |
2007 |
(3)(x1-5)(x2-5)=x1•x2-5(x1+x2)+25=-2007-5×(-2)+25=-1972;
(4)|x1-x2|=
(x1−x2)2 |
(x1+x2)2−4x1•x2 |
(−2)2−4×(−2007) |
502 |
1 |
x1 |
1 |
x2 |
1 |
x1 |
1 |
x2 |
x1+x2 |
x1•x2 |
−2 |
−2007 |
2 |
2007 |
(x1−x2)2 |
(x1+x2)2−4x1•x2 |
(−2)2−4×(−2007) |
502 |