已知f(x)是定义在(0,+∞)的单调增函数,f(xy)=f(x)+f(y),且f(2)=1,则不等式f(x)+f(x-3)≤2的解集
我自己写的是x>0,x-3>0,x(x-3)≤4.有谁能解释下为什么f[x(x-3)]≤f(4)从而得出x(x-3)≤4,
人气:211 ℃ 时间:2020-04-13 07:40:29
解答
思路是这样,应为要求f(x)+f(x-3)≤2的解集所以需要把“f(x)+f(x-3)”合并;
自然会用到这个条件:f(xy)=f(x)+f(y),
那么就有f[x(x-3)]=f(x)+f(x-3)≤2
题目就变成解f[x(x-3)]≤2的解集,
之后用f(2)=1和f(xy)=f(x)+f(y)这两个条件,有
f(2*2)=f(2)+f(2)=2
那么题目就变成了f[x(x-3)]≤f(4)
又因为f(x)是定义在(0,+∞)的单调增函数
就有x(x-3)≤4
应该比较清楚吧
推荐
- f(x)是定义在R上的单调增函数,且满足f(xy)=f(x)+f(y).求若f(2)=1,解不等式f(x+3)》1
- 设函数f(x)是定义在(0,+∞)上的单调增函数,且f(xy)=f(x)+f(y).若f(3)=1,求不等式f(x)+f(x-2)<1的解集
- f(x)是定义在R上的单调增函数,且满足f(xy)=f(x)+f(y).1.求f(1)的值 2.若f(2)=1,解不等式f(x+3)>1
- 已知f(x)是定义在(0,+∝)上的增函数,f(xy)=f(x)+f(y),f(2)=1 求不等式f(x)+f(x-2)>3的解集
- 设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),f(3)=1,求解不等式f(x)+f(x-2)>1.
- 用函数观点看一元二次方程 1、 二次函数y= -x2+4x的值为2,求自变量x的值, 可以看作是解一元二次方程____
- 一个长方形,宽是6厘米,如果宽增加4厘米,面积就增加56厘米2,原来长方形的面积是多少?
- 英美法资产阶级革命的成果,并逐一说明其作用
猜你喜欢