> 其他 >
如图,AM是⊙O的直径,过⊙O上一点B作BN⊥AM,垂足为N,其延长线交⊙O于点C,弦CD交AM于点E.

(1)如果CD⊥AB,求证:EN=NM;
(2)如果弦CD交AB于点F,且CD=AB,求证:CE2=EF•ED;
(3)如果弦CD、AB的延长经线交于点F,且CD=AB,那么(2)的结论是否仍成立?若成立,请证明;若不成立,请说明理由.
人气:337 ℃ 时间:2020-03-29 21:26:59
解答
(1)证明:如图1,连接BM,
∵AM是⊙O的直径,
∴∠ABM=90°.
∵CD⊥AB,
∴BM∥DC.
∴∠NBM=∠NCE.
∵BN=NC(ON是弦心距),
∴△NEC≌△NMB(ASA).
∴EN=NM.
(2)证明:如图2,连接AC,BE,BD.
∵CD=AB,
ADB
=
DBC

AD
=
BC

∴∠ACD=∠BDC.
∴∠ACD=∠ABE,
∴∠BDC=∠ABE,∠BEF=∠BEF.
∴△FEB∽△BED.
∴EF•DE=BE2=CE2
(3)如图3,(2)的结论仍成立
证明:∵AM⊥BC,
∴BE=CE,AB=AC.
∴∠1=∠2,∠3=∠4.
∵AB=CD,
∴∠4=∠DBC.
∴∠3=∠DBC=∠2+∠5.
又∵∠3=∠F+∠1,
∴∠F=∠5.
∵∠BED=∠FEB,
∴△BDE∽△FBE.
∴BE:EF=ED:BE,
∴BE2=EF•ED.
∴CE2=EF•ED.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版