AM是圆O直径圆O上一点B作BN垂直于AM,其延长线交圆O于C弦CD交AM于ECD交AB于FCD=AB证CE方=EF*ED
人气:481 ℃ 时间:2019-11-07 18:47:58
解答
证明:
首先,根据垂径定理,我们可以通过证明三角形BEN与CEN的全等来得出
BE=CE的结论,
那么,题设就转化成了BE^2=EF*ED,
要证明这个命题,只要证明三角形BEF与DEB相似,
这两个三角形有公共角∠DCB,
因此只要证明∠ABE=∠BDC即可,
首先,利用垂径定理,可知∠ACE=∠ABD(证明全等),
其次,由于AB=CD,我们可以通过证明三角形ABD与CDB的全等,得出四边形ACBD是等腰梯形的结论,
所以我们有:∠ACD=∠BDC=∠ABD
因此∠BDC=∠ABE,
则三角形BEF与DEB相似,原命题成立.
证毕.
推荐
- AM是圆O直径圆O上一点B作BN垂直于AM,其延长线交圆O于C弦CD交AM于ECD交AB于FCD=AB证CE方=EF*ED
- ab是圆o的直径,cd为非直径的弦,am垂直cd交cd于m,bn垂直cd于n,求证,cm=dn
- AM是圆O的直径,过圆O上一点B作BN⊥AM,其延长线交圆O于点C,弦CD交AM于点E.(1)如果CD⊥AB,求证 EN=N
- 如图,AM是⊙O的直径,过⊙O上一点B作BN⊥AM,垂足为N,其延长线交⊙O于点C,弦CD交AM于点E. (1)如果CD⊥AB,求证:EN=NM; (2)如果弦CD交AB于点F,且CD=AB,求证:CE2=EF•ED; (3)如果弦CD
- 如图 在圆o中 弦ab分别交oc,od于m,n若amc=bnd求证am=bn
- 2.Kite-f_______ is very popular in China
- 求10道初三分式化简求值求值题+答案.
- I have read ____ of the young writer?
猜你喜欢
- jan has lunch at twelve 对 at twelve 提问
- 一瓶2升的果汁喝了10分之3,还剩多少毫升
- 把长8cm,宽3cm,高3cm的长方体锯成一个最大的正方体,锯掉部分的体积是多少?
- 象公路 水路 铁路还有什么路?
- 温室效应,臭氧空洞,酸雨分别是什么引起的?
- 一个最简分数,它的分子分母的积是100,这个最简分数是( )
- 求曲线y=1/2x^2,x^2+y^2=8所围成的图形面积
- 已知向量a,b满足| a |=1 b=(2,1)且λ a+b=0 则 |λ |=